博客
关于我
Li‘s 影像组学视频学习笔记(15)-ROC曲线及其绘制
阅读量:563 次
发布时间:2019-03-09

本文共 977 字,大约阅读时间需要 3 分钟。

ROC曲线与AUC评价

ROC曲线全称为受试者工作特征曲线,它是用来衡量分类器性能的重要工具。ROC曲线通过图形化的方式展示分类器在不同阈值下的假阳率(FPR)和真阳率(TPR)之间的关系。

在ROC曲线中:

  • 横轴为假阳率(FPR),表示分类器预测出假阳性的比例。
  • 纵轴为真阳率(TPR),表示分类器预测出真阳性的比例。
  • 曲线上的每一点都对应着一个阈值,即当预测阳性概率达到或超过该阈值时,分类器会将样本判定为阳性。
  • 四个关键点:
    • (0,0):FPR=0,TPR=0,表示分类器对所有样本都预测为阴性。
    • (1,1):FPR=1,TPR=1,表示分类器对所有样本都预测为阳性。
    • (1,0):FPR=1,TPR=0,表示分类器对所有样本都预测错了。
    • (0,1):FPR=0,TPR=1,表示分类器对所有样本都预测对了。

AUC(Area Under Curve)即曲线下面积,用于量化分类器的整体性能。AUC得分越高,表示分类器的性能越好。通过计算ROC曲线下的面积,可以综合评估模型的 discrimination power(区分能力)。

以下是基于代码实现的ROC曲线与AUC计算:

from sklearn.metrics import roc_curve, roc_auc_score# 假设y是实际标签,y_probs是模型预测的概率结果y_probs = model_svm.predict_proba(X)fpr, tpr, thresholds = roc_curve(y, y_probs[:, 1], pos_label=1)plt.plot(fpr, tpr, marker='o')plt.xlabel('FPR')plt.ylabel('TPR')plt.show()auc_score = roc_auc_score(y, model_svm.predict(X))print(auc_score)

通过上述代码可以绘制ROC曲线并计算AUC得分。通常,我们会选择AUC得分最高的模型作为最优模型。此外,可以通过调整阈值(thresholds)来优化分类器的性能,选择最优阈值时,可以通过最大化 TPR - FPR 来实现。

作者:北欧森林

来源:简书,已获授权转载

RadiomicsWorld.com “影像组学世界”论坛:

你可能感兴趣的文章
OpenCV 3.1 imwrite()函数写入异常问题解决方法
查看>>
OpenCV 4.1.0版drawContours
查看>>
Opencv cv2.putText 函数详解
查看>>
opencv glob 内存溢出异常
查看>>
opencv Hog Demo
查看>>
opencv Hog学习总结
查看>>
opencv Mat push_back
查看>>
opencv putText中文乱码
查看>>
OpenCV Python围绕特定点将图像旋转X度
查看>>
opencv resize
查看>>
Opencv Sift和Surf特征实现图像无缝拼接生成全景图像
查看>>
opencv SVM分类Demo
查看>>
OpenCV VideoCapture.get()参数详解
查看>>
opencv videocapture读取视频cap.isOpened 输出总是false
查看>>
opencv waitKey() 函数理解及应用
查看>>
OpenCV 中的图像转换
查看>>
OpenCV 人脸识别 C++实例代码
查看>>
OpenCV 在 Linux 上的 python 与 anaconda 无法正常工作.收到未实现 cv2.imshow() 的错误
查看>>
Opencv 完美配置攻略 2014 (Win8.1 + Opencv 2.4.8 + VS 2013)上
查看>>
opencv 模板匹配, 已解决模板过大程序不工作的bug
查看>>